

AFRL-RI-RS-TR-2008-294
Final Technical Report
November 2008

ON LARGE-SCALE HYBRID COMPUTING
ARCHITECTURE FOR NEOCORTICAL MODELS -
WITH AN APPLICATION IN REALIZING
COGNIZANCE OPERATIONS OF THE
VISUAL CORTEX

State University of New York at Binghamton

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-294 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

THOMAS E. RENZ EDWARD JONES, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jul 07 – May 08
4. TITLE AND SUBTITLE

ON LARGE-SCALE HYBRID COMPUTING ARCHITECTURE FOR
NEOCORTICAL MODELS – WITH AN APPLICATION IN REALIZING
COGNIZANCE OPERATIONS OF THE VISUAL CORTEX

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-07-1-0195

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Qing Wu and Qinru Qiu

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
AC

5f. WORK UNIT NUMBER
GR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
State University of New York at Binghamton
Dept of Electrical and Computer Engineering
PO Box 6000
Binghamton NY 13902

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITC
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-294

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW 2008-0962

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes working hardware and software developed to realize large-scale Brain-State-in-a-Box (BSB) models on a
workstation with hardware acceleration using a Field Programmable Gate Array (FPGA). Just one Xilinx XC2VP70 FPGA was able
to support about 600 128-dimensional BSB models to run at 10ms reaction time. Software was developed that controls the hardware
operations and sends/receives data through publish/subscribe routines provided by an open-source package. Next, the confabulation
based knowledge base training function on the Cell Broadband Engine (CBE) was implemented. The workload of the training
function was distributed to 6 Synergistic Processing Elements (SPEs) in the Cell processor. Dynamic memory management
techniques were developed to enable the SPE to load and write back information from/to the main memory during the training
process. Preliminary software profiling was performed to indicate the performance bottleneck and guide the software optimization.
The Cell-based implementation achieved 4X~9X speedups comparing to traditional processors.

15. SUBJECT TERMS
Brain State in a Box, Hardware for Cognitive Systems, Hardware Cognitive Operations, Modular Cognitive Computer Systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

32

19a. NAME OF RESPONSIBLE PERSON
Thomas Renz

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents
1. Summary ... 1

2. Introduction ... 2

2.1. Human cognizance and neo-cortical models ... 2

2.2. Brain-State-in-a-Box (BSB) model ... 4

2.3. The hybrid computer cluster platform .. 4

2.4. Confabulation based knowledge base training .. 6

2.5. Web solutions platform event system: a distributed publish/subscribe event system 8

3. Methods, Assumptions, and Procedures ... 9

3.1. Hardware designs of a single 128-dimensional model ... 9

3.2. Hardware Design for running 256 128-neuron BSB models on the same FPGA 11

3.3. Integrating pub/sub protocol with BSB hardware/software .. 13

3.4. Implementation of cogent confabulation algorithms on Cell processor...................................... 14

4. Results and Discussion ... 18

4.1. Pattern recognition application using BSB hardware ... 18

4.2. Performance characterization of cogent confabulation algorithms on Cell 23

5. Conclusions ... 25

6. References ... 26

ii

List of Figures
Figure 1. Components of a neuron. ... 2
Figure 2. The neuron model. ... 2
Figure 3. Structure of the human brain. .. 3
Figure 4. A hierarchical model of the neocortex. ... 3
Figure 5. The components and system structure of the HPC cluster at RomeLab. 5
Figure 6. The block diagram of the WILDSTAR II PCI card. ... 5
Figure 7. Lexicons and knowledge bases for confabulation based sentence completion. 6
Figure 8. Representing the knowledge base using merged tree. ... 7
Figure 9. Detailed data structure for source and target trees. .. 7
Figure 10. The block diagram of the WSP system.. 8
Figure 11. Overall system architecture. .. 9
Figure 12. Data path design of the hardware accelerator for BSB recall operation. 10
Figure 13. Data path design of the hardware accelerator for BSB training operation. 11
Figure 14. Data path design of the hardware accelerator for supporting 256 different BSB models. 12
Figure 15. (a) BSB hardware operation flow and (b) interactions among state machines. 13
Figure 16. A simple communication scenario. ... 14
Figure 17. Flow diagram of the training function that runs on the SPE. .. 14
Figure 18. Flow diagram of the source list search function. ... 15
Figure 19. Target list search. ... 16
Figure 20 Flow of creating a target list ... 17
Figure 21. Vertical line pattern and its representation. ... 18
Figure 22. Complete training set of line patterns. ... 19
Figure 23. Complete training set of alphabetic and symbol patterns. ... 20
Figure 24. Partial patterns of letter “A”. ... 21
Figure 25. Screenshots of the recall output files. .. 22
Figure 26. Performance comparison. .. 23
Figure 27. Performance of optimized software. .. 25

iii

List of Tables

Table 1. Flag bits for different line patterns. ... 18
Table 2. Statistics of successful and unsuccessful recall operations. .. 21
Table 3. Cell program performance information. ... 24
Table 4. Software profile of SPE-PPE requests. ... 24
Table 5. Speedups of the optimized cell program. .. 24

1

1. SUMMARY

This research project consists of two major tasks.

In the first task we have investigated and developed a novel high-performance bio-inspired computing
architecture (BICA) for realizing the cognizance operations of the human brain. We developed working
hardware and software that realize large-scale Brain-State-in-a-Box (BSB) models on a Windows-based
workstation with hardware acceleration using Field Programmable Gate Array (FPGA).

The hardware versions of the 128-dimensional BSB training and recall functions were implemented and
run on the Annapolis Wildcard II Pro FPGA board in a Dell Precision workstation. With just one Xilinx
XC2VP70 FPGA, we were able to support about 600 128-dimensional BSB models to run at 10ms
reaction time. We also developed software that controls the hardware operations and sends/receives data
through publish/subscribe routines provided by an open-source package.

In the second task, we implemented the confabulation based knowledge base training function on the Cell
Broadband Engine. The workload of the training function was distributed to 6 Synergistic Processing
Elements, SPEs in the cell processor. We developed dynamic memory management techniques to enable
the SPE to load and write back information from/to the main memory during the training process.
Preliminary software profiling was performed to indicate the performance bottleneck and guide the
software optimization. Compared to single processor training function that runs on a workstation with
dual core 2GHz Pentium processor, the cell based implementation achieves 4X~9X speedups.

2

2. INTRODUCTION
2.1. Human cognizance and neo-cortical models

Nerve cells, called neurons are the fundamental components of the central nervous system (or the brain).
The brain consists of approximately 100 billion neurons (1011 neurons). Neurons have 5 special functions
which differ from the other cells in the body: (1) they receive signal pulses from their neighboring
neurons; (2) they integrate these input pulses; (3) sufficient input pulses give rise to output pulses; (4)
neurons can conduct these pulses; (5) they transmit them to other neurons which are capable of receiving
them.

As shown in Figure 1, the neuron is made of three parts: cell body, dendrites and axon.

Figure 1. Components of a neuron.

The body of the cell contains the nucleus of the neuron and carries out the various biological
transformations necessary to the life of neuron. The dendrites are the principal receptors that receive the
incoming signals from the other neurons. The axon or nerve fiber sends out the output signals from the
neuron. Axons branch out to communicate with other neurons. Neurons are connected to each other in a
complex spatial arrangement to form the central nervous system. As shown in Figure 1, the connection
between two neurons takes place at the synapse, where they are separated by a synaptic gap of the order
of 0.01 micron.

The neuron processes the electric signals that arrive on dendrites and transmits the resulting electric
signals to other neurons through the axon. The classical biological explanation of this processing is that
the cell carries out a summation of the incoming signals on its dendrites. If the summation exceeds a
certain threshold, the neuron responds by issuing a new pulse that is propagated along its axon. The
neuron remains in an inactive state if summation is less than the threshold. This model is shown in Figure
2.

Figure 2. The neuron model.

D e n d r i t e s

S y n a p s e

A x o n

Dendrites Threshold

Summation
Axon

Cell body

3

Research shows that, the human neocortex is divided into four main lobes. The lobes are divided into
cortical columns. Cortical columns are further divided into mini columns that are made up of about 100 to
200 neurons as shown in Figure 3.

Figure 3. Structure of the human brain.

With the recent ongoing research in the field of human cognizance, it has been shown that the working
mechanisms of the auto-associative and hetero-associative neural memory models are very similar to that
of the cerebral cortex i.e., neocortex. Researchers think that the neocortex follows a hierarchical
architecture [2] as shown in Figure 4. On the bottom of the hierarchy is the neuron; multiple neurons
forming cortical mini-columns; multiple mini-columns forming cortical columns, with the pattern
repeated at higher levels to implement the functional blocks thought to underlie cognizance operations,
for example vision, in the human brain.

Figure 4. A hierarchical model of the neocortex.

Various mathematical models have been studied to mimic the different operations in this hierarchical
architecture/functionality of the brain. The Brain-State-in-a-Box (BSB) attractor model, is one of the
promising solutions to the problem. The BSB model is usually used to model the functionality of a mini-
column. Multiple BSB models can be connected to model a cortical column, and eventually to model a
complete cognitive function of the brain such as vision.

touch audition vision

4

2.2. Brain-State-in-a-Box (BSB) model

To artificially realize the operations in this hierarchical architecture/functionality of the brain, different
mathematical models have been studied. The BSB attractor model [1] is one of the promising solutions to
the problem. The BSB model is a simple, auto associative, nonlinear, energy-minimizing neural network.
There are two main operations in a BSB model, Training and Recall.

The mathematical model of a BSB recall operation can be written as:

X(t+1) = S(α·A·X(t) + λ·X(t) + γ ·X(0))

where:

 X(t) and X(t+1) are N dimensional vectors;
 A is an N×N connection matrix;
 α is a scalar constant feedback factor;
 λ is an inhibition decay constant;
 γ is a nonzero constant if there is a need to maintain the input stimulation;
 S() is the “squash” function: S(x) = 1 if x > 1; -1 if x < -1; x otherwise;

In the training operation, the N×N connection (weight) matrix A is modified as

ΔA = lr * (X – AX) ⊗ X

A = A + ΔA

where, X is the normalized input training pattern;

 lr is the Learning rate;

 (X – AX) ⊗ X is the outer product of two vectors;

2.3. The hybrid computer cluster platform

The proposed hardware architecture is targeted at highly-connected hybrid computer clusters, which
consist of a large number of workstations communicating with each other through high-speed
interconnect networks. Within each workstation, in addition to traditional architecture with general-
purpose processors, there are custom boards with field programmable gate array, FPGA devices and local
memories.

Figure 5 shows the components and system structure of the High-Performance Computing, HPC cluster at
the Air Force Research Lab, Rome, New York. The HPC cluster consists of about 50 computing nodes
that are connected through a high-speed interconnect network. Each node in the cluster consists of a
general-purpose workstation with Intel’s Pentium Xeon processors running the Linux operating system,
and a WILDSTAR II PCI card [3] in the workstation’s PCI slot.

Figure 6 shows the detailed block diagram of the WILDSTAR II PCI card. There are two Xilinx Virtex II
XC2V6000 FPGA [4][5] Processing Elements, PEs on each card. Each PE connects to 6 parallel local
memory banks, which provides high bandwidth (5.5 GBytes/second) for data read/write operations. These
high-performance FPGA cards are the key enabling technology for the proposed computing architecture.

5

Figure 5. The components and system structure of the HPC cluster at RomeLab.

Figure 6. The block diagram of the WILDSTAR II PCI card.

6

2.4. Confabulation based knowledge base training

Cogent confabulation is an emerging theory proposed by Dr. R Hecht-Nielsen. Based on the theory, the
information processing of human cognition is carried out by thousands of separate thalamocortical
modules. Each of these thalamocortical modules is a patch of cerebral cortex plus a uniquely paired zone
of thalamus and is referred to as a lexicon or a feature attractor module. Different collections of neurons
in the thalamocortical module represent different symbols. Knowledge is stored as the links and their
strength between neurons.

Confabulation based sentence completion software has been developed at the Air Force Research
Laboratory Emerging Computing Technology Branch, AFRL/RITC, based on the example provided in
[7]. (Two versions of the confabulation software have been developed. The code “cf.c” was developed by
Daniel Burns from AFRL/RITC while the codes “"LexMaker.cc" and "TextReader.cc" were developed by
Michael Moore from ITT Industries.) A sentence is represented using 40 lexicons that are arranged in 2
levels. A lexicon is a collection of symbols. The ith lexicon in level 1 represents the word (or punctuation)
in the ith location of a sentence. Since there are 20 lexicons in level 1, the words or punctuations beyond
the first 20 are discarded. The ith lexicon in level 2 represents the phrase that initiates from the ith
location of a sentence. The connections of knowledge bases are “causal”. Within each level, each lexicon
only establishes knowledge bases with later lexicons. The lexicons in different levels are also connected
with knowledge bases. The ith lexicon in level 1 is connected to the jth lexicon in level 2 where j ≤ i
while the jth lexicon in level 2 is connected to the ith lexicon in level 1 where i ≥ j. shows the lexicons
and the knowledge bases for the sentence completion problem.

Figure 7. Lexicons and knowledge bases for confabulation based sentence completion.

Overall, there are 800 knowledge bases in the system. A knowledge base from lexicon A to B is a matrix.
Each row in the matrix represents a source symbol that appears in A. Each column represents a target
symbol that appears in B. The ijth entry in the matrix represents the strength of the link between symbol i
and j. It gives the number of times that symbol i and j co-occurs in lexicon A and B respectively. The
knowledge base matrices are built up during the learning process. They are learned by reading novels and
scientific papers that are stored on hard disk.

The size of the knowledge bases depends on the training files. Let N denote the total number of possible
words, phrases and punctuations in the training file, then each lexicon has a collection of N symbols and
each knowledge base is an N×N matrix. For the sentence completion problem, since the symbols are the
words and phrases in the English dictionary, the size of N can easily go up to more than 10,000. It is
almost impossible to store the entire matrix without compression.

0 1 2 3 4 5 6 19

20 21 22 23 24 25 26 29 Phrase Level

Word Level0 1 2 3 4 5 6 19

20 21 22 23 24 25 26 29 Phrase Level

Word Level

7

Our previous analysis [8] shows that the merged tree structure is the most efficient for managing the
knowledge base during the training process. Figure 8 gives an example of the merged tree based
representation of the knowledge base. A source tree is associated with each source lexicon. Each node of
the source tree represents a symbol that appears in the source lexicon during the training. A source
lexicon has multiple (20~40) links pointing to different target lexicons. Hence, each node in the source
tree points to a list of target trees. Each target tree stores the set of symbols that appear in the
corresponding target lexicon. Overall, there will be 40 source trees and a large number of target trees.

The size of the source or target trees is determined by the training file. In our previous study, the system
was trained using a medium sized training file. The average size of a source tree is 4000 nodes while the
average size of a target tree is 3 nodes. Overall, there are 4000*40 = 160K source nodes and 160K*3 =
480K target nodes.

Figure 8. Representing the knowledge base using merged tree.
Each tree node in the source tree or target tree requires at least 4 integer fields. Both of them need to store the
information of the symbol_id, the pointer to left and right children. The node that belongs to a source tree is also
associated with a pointer that points to the list of target trees while the node that belongs to a target tree is associated
with an integer which is the value of the knowledge base. Figure 9 shows the detailed data structure for one source
tree and its target trees. The above analysis shows that each tree node requires 16 bytes storage.

Figure 9. Detailed data structure for source and target trees.

Source
kb1 kb1 kb3 kb4

Source
kb1 kb1 kb3 kb4kb1 kb1 kb3 kb4

Source Multiple Target Trees
kb1 kb2 kb3

kb1 kb2 kb3

Merged Tree

Source Multiple Target Trees
kb1kb1 kb2kb2 kb3kb3

kb1kb1 kb2kb2 kb3kb3

Merged Tree

symbol_id

left_child
right_child

target_tree_ptr

symbol_id
left_child
right_child
KB_Value

ptr next

symbol_id

left_child
right_child

target_tree_ptr
symbol_id

left_chil
dright_child

target_tree_ptr

ptr next ptr next

symbol_id
left_child

right_child
KB_Value

symbol_id
left_chil

dright_child
KB_Value

symbol_id

left_child
right_child

target_tree_ptr

symbol_id
left_child
right_child
KB_Value

ptr next

symbol_id

left_child
right_child

target_tree_ptr
symbol_id

left_chil
dright_child

target_tree_ptr

ptr next ptr next

symbol_id
left_child

right_child
KB_Value

symbol_id
left_chil

dright_child
KB_Value

8

2.5. Web solutions platform event system: a distributed publish/subscribe event system

The Web Solutions Platform [6], WSP event system is a distributed publish/subscribe event system. It is
distributed in that the publishing and subscribing of events can be intra-machine and inter-machine.
Publishers and subscribers do not know of each other’s existence although a publisher could listen to
subscription events to determine if there is an interested subscriber to its events prior to publishing.

Events have an Event Type property to define their type. This property is a Globally Unique Identifier,
GUID which allows for anyone to define their own event type without worry of conflicting with event
types created by other individuals. Applications subscribe to event types. The application can subscribe to
specific event types or to all event types. Each subscription made is assigned a subscription ID. A
subscription event is then published throughout the mesh for this subscription ID and event type.

The machines in the event mesh are organized in a hierarchy. Each machine knows who its parent is and
the parent learns about its children as they connect. Communication between machines is done using
Transmission Control Protocol, TCP. If events are sent between siblings, the events are sent from the
publishing machine to the parent machine and then down to the subscribing machine. Regardless of how
many subscribers there may be from the parent onward, the event will only be sent once from the child
machine to the parent machine (or parent to child if that is the case). The parent will in turn route the
event on to its parent and/or children as appropriate.

The WSP event system is composed of a collection of loosely-coupled components. The system runs as a
windows service with each component running in its own thread. The components communicate with
each other through in-memory queues.

Figure 10. The block diagram of the WSP system.

Figure 10 shows the main components of the system. The Receiver and Forwarder are the communications
interfaces to interact with the parent and children machines. When an event arrives to the Receiver, it

Publishing Application Subscribing Application

Event Router Process

Shared
Memory

RePublisherReceiver Listener Forwarder

Q
ue

ue

Q
ue

ue

Persister

Queue

Subscriptions

Queue

Publishing Applications Subscribing Applications

Publish
Manager

Subscription
ManagerApplication Application

Publishing Application Subscribing Application

Event Router Process

Shared
Memory

RePublisherReceiver Listener Forwarder

Q
ue

ue

Q
ue

ue

Persister

Queue

Subscriptions

Queue

Publishing Applications Subscribing Applications

Publish
Manager

Subscription
ManagerApplication Application

9

hands the event off to the RePublisher to publish the event on the local system. Publishing the event
means putting it in the Shared Memory buffer. Interested subscribers copy the event from Shared Memory
as does the Listener. The Listener forwards the event to the other components, if appropriate. If the event
is a subscription event, the Listener sends it to Subscriptions to update the routing tables. If the event type
is to be persisted, the Listener forwards the event to Persister. If the routing tables indicate the event needs
to be forwarded, the Listener will forward the event to the Forwarder to route the event.

For publishing applications, they simply put the event into the Shared Memory buffer. When the
publisher and subscriber are on the same machine, the event is placed into Shared Memory by the
publisher and taken out of Shared Memory by the subscriber. It never incurs the overhead of going
through a broker, e.g. the event system. Since there can be N subscribers listening to what events are
placed into Shared Memory, this allows for all N subscribers to get the event at the same time and very
efficiently.

3. METHODS, ASSUMPTIONS, AND PROCEDURES
3.1. Hardware designs of a single 128-dimensional model

The overall hardware/software system architecture is show in Figure 11.

Figure 11. Overall system architecture.

Figure 12 shows the data path design of the hardware accelerator for 128-dimensional BSB recall
operations. The 128×128 weight matrix is read from the interface BRAM in 32 stages and stored in 128
on-chip Block Random Access Memory, BRAMs. The BRAMs are selected one by one using the index
counter. The X vector is read and stored in two 128-stage shift registers, of which one is used for parallel
multiplication and the other for serial addition. The X vector is then multiplied with each row element of
the weight matrix from 128 BRAMs and the values are latched to pipeline register P1. The values from
P1 are added using the adder tree. An additional pipeline stage P2 is included inside the adder tree. The
output of the adder tree is latched to the pipeline register P3. This value is multiplied with α to get αAX
which is then latched to the pipeline register P4.

The value λX is calculated from the 128-stage X shift register used for serial addition. This value is
delayed for 4 clock cycles to match the pipeline delay due to the other path using 4-stage pipeline register
P5, which is then added with the value in the register P4. This value is squashed and the new value of X is

HighHigh--Bandwidth NetworkBandwidth Network

Software on
General-Purpose

Processor

Software onSoftware on
GeneralGeneral--PurposePurpose

Processor Processor

Communication
Protocol
Interface

CommunicationCommunication
ProtocolProtocol
Interface Interface

Main MemoryMain MemoryMain Memory

Software-
Hardware
Interface

SoftwareSoftware--
HardwareHardware
InterfaceInterface

Dedicated
High-Speed

Computational
Hardware

DedicatedDedicated
HighHigh--SpeedSpeed

ComputationalComputational
HardwareHardware

Local
Memory
LocalLocal

MemoryMemory
Local

Memory
LocalLocal

MemoryMemory

Local
Memory
LocalLocal

MemoryMemory
Local

Memory
LocalLocal

MemoryMemory

10

stored in 128-shift register XN in 132 clock cycles. Finally, the value in XN is updated to both the X shift
registers in one clock cycle.

Figure 12. Data path design of the hardware accelerator for BSB recall operation.

Figure 13 shows the data path design of the hardware accelerator for 128-dimensional BSB training
operations. The main goal of training is to generate a weight matrix from the given X vector. The
normalized value of X vector (Xnorm) is read and stored in two 128-stage shift registers, of which one is
used for parallel multiplication and the other for serial subtraction. The weight matrix is initialized to ‘0’.
The Xnorm is then multiplied with each row of the weight matrix in parallel and is latched in the pipeline
register P1 every clock cycle. The adder tree performs the addition of all the elements in the pipeline
register P1 and latches the result to pipeline register P3. There is an additional pipeline stage P2 inside the
adder tree. The value in P3 is then subtracted from Xnorm (this value is provided from the serial shift
register). The result is multiplied by learning rate and then latched to the pipeline register P4. The
resultant value lr·(X – AX) is shifted into another serial shift register each clock cycle. Then an outer
product operation is performed on Xnorm with each value of lr·(X – AX) from the serial shift register. The
result is latched to the pipeline register P5. Each row value of the weight matrix is delayed 1 clock cycle
to match the pipeline delay due to the other path and is added with the result in P5. The result is then
updated to the corresponding row of the weight matrix. The 128 parallel multipliers are shared between

11

the first parallel multiplication with weight matrix and the second with outer product using a multiplexer
and a de-multiplexer.

Figure 13. Data path design of the hardware accelerator for BSB training operation.

3.2. Hardware Design for running 256 128-neuron BSB models on the same FPGA

Due to the memory limitation of the FPGA board, the final design can accommodate 256 different weight
matrices. This large amount of data can only be stored using SRAM chips on the board. The design has 6
parallel direct access channels to the 6 local SRAM banks, to minimize the loading time of the
coefficients. The design is shown in Figure 14.

The weight matrices from the software are loaded into the SRAMs through the BRAM interface one by
one. Each weight matrix is divided among the 6 SRAMs, for parallel load. This step is the same as
mentioned in the previous design.

12

Figure 14. Data path design of the hardware accelerator for supporting 256 different BSB models.

The weight matrix is loaded from the 6 SRAMs into the 128 BRAMs in parallel (i.e. 6 BRAMs are loaded
in parallel at a time). This task is synchronized with loading of the input pattern X-vector, from software,
to interface BRAM and then into the two shift-registers (one for parallel multiplication and the other for
serial one). The loading of X-vector is performed by the secondary state machine SM1. While the primary
state machine handles the loading of weight matrices into the Static Random Access Memory, SRAMs
and also the parallel load of BRAMs. After loading weight matrices into SRAMs, during the parallel load
of a weight matrix into the BRAMs, the primary state machine sends a start signal and the index value of
the weight matrix being loaded to the secondary state machine SM1. The start signal triggers the work of
SM1. Once the SM1 finishes its task it sends a done signal to the primary state machine. After the parallel
load of a weight matrix is done the primary state machine performs 10 recall operations. The recalled
output X-vector is then sent to the software on the host PC. This task is controlled by a secondary state
machine SM2 that receives a start signal and index value from the primary state machine. It sends a done
signal once it has completed its task. Except for the first BSB model, the sending of the output X-vector
operation to the software is done also in parallel with the loading of the weight matrix (i.e., the two
operations sending the output X-vector to the software and loading the next input X-vector for next recall
operation from the software are overlapped with the loading of the weight matrix into the BRAMs). The

13

final BSB recall only sends the output X-vector to the software. The entire operation flow is shown in
Figure 15. For the current experimental runs, the weight matrices and the input X-vectors are read in from
separate files and then stored in an array in the main host code. The recalled X-vector is stored one by one
in an array and then all the 256 of them are stored to a file.

 (a) (b)

Figure 15. (a) BSB hardware operation flow and (b) interactions among state machines.

3.3. Integrating pub/sub protocol with BSB hardware/software

With the resources currently available to us, we designed a simple communication scenario to integrate
the hardware-accelerated BSB application with the pub/sub protocol.

As shown in Figure 16, the BSB design is implemented on workstation B. The pub/sub protocol software
is run on both A and B individually. The pub/sub software consists of an event system router and the
application programs specified by users. The event system service is a router in the same way a Cisco
router is on a physical network. It is inherently bi-directional, so publishing and subscribing applications
can be run on both workstations. BSB inputs “x_vector” and the recalled outputs “x_recalled” are
published with different event types: event1 and event2.

A subscribes to date with “event2” type, and B subscribes to “event1”. Therefore when A publishes the
x_vector, B will detect the event1-type-message it is listening for, and retrieves the x_vector from the
network. Similarly, when B finishes computing the recalled vector and publishes the x_recalled, A will
retrieve the message.

14

Figure 16. A simple communication scenario.

3.4. Implementation of cogent confabulation algorithms on Cell processor

The training software runs in the client server mode on the IBM Cell processor [9]. The 6 SPEs are clients
that perform the training function. During the process, they issues service requests to the PowerPC
Processing Element, PPE. The PPE works as a server that collects and responds to those requests. The
SPE sends the request to the PPE through the output mailbox and receives the feedback from PPE from
the input mailbox.

Figure 17 gives the overall flow of the training function that runs on an SPE. The block diagram is color
coded. Different colors are used to represent different tasks, which include mailbox read/write, DMA
read/write, normal operation and sub-functions.

Figure 17. Flow diagram of the training function that runs on the SPE.

B: IP2A: IP1 x_vector
event1

x_recalled
event2

Wait for EA of a new page in the
main memory

Search the
source tree

Search the target symbols
in the target trees

Link the new node to
current node

A

A

Get T training
sentences

Get T training
sentences

For each sentence

For source lexicon
mapped to SPU

The source symbol is in
the current source tree

Create a new node for
the symbol

The last page is
full

Create the
target trees

While(!end_of
_training)

mbox-R

Write back the last page
and create an empty page

DMA-W

Req for EA of
a new source

page

mobx-W

Y

Y

N

Write back current
page if it is not

cached

DMA-W

Mbox read

Mbox write

DMA read

DMA write

Normal operation

Sub-function

Wait for EA of a new page in the
main memory

Wait for EA of a new page in the
main memory

Search the
source tree

Search the target symbols
in the target trees

Search the target symbols
in the target trees

Link the new node to
current node

Link the new node to
current node

A

AA

Get T training
sentences

Get T training
sentences

For each sentence

For source lexicon
mapped to SPU

The source symbol is in
the current source tree

Create a new node for
the symbol

The last page is
full

The last page is
full

Create the
target trees
Create the
target trees

While(!end_of
_training)

mbox-R

Write back the last page
and create an empty page

DMA-W
Write back the last page

and create an empty page

DMA-W

Req for EA of
a new source

page

Req for EA of
a new source

page

mobx-W

Y

Y

N

Write back current
page if it is not

cached

DMA-W

Write back current
page if it is not

cached

Write back current
page if it is not

cached

DMA-W

Mbox read

Mbox write

DMA read

DMA write

Normal operation

Sub-function

15

While the training is not ended, the SPE will get T training sentences from the designated area in the main
memory. To improve the Direct Memory Access, DMA efficiency, T is set to 64. For each training
sentence, and for each source lexicon that is mapped to it, the SPE first searches the source list to look for
the source symbol. If the source symbol is in the list, then the SPE go on searching for the target symbols
in the target list. If the source symbol is not found, then a new node is created for the symbol and the node
is added to the last page of the source list. The SPE fills the current node’s child information with the
page id and page offset of the new node. Since the current node has been modified, if it is not the last
page or one of the first L pages, then it will be written back. If the last page is not full, then the SPE will
continue processing the next source lexicon, otherwise, it must write the last page back to the main
memory. To write back the last page, a page must first be allocated in the main memory and its address
must be sent to the SPE. This task is performed by the PPE. The SPE waits until it receives the Effective
Address, EA of a new page from the PPE. It will then write back the last page to this address and at the
same time create an empty page in the local storage. The page that has been deposited to the main
memory must be linked to the end of the source list and again this job is performed by the PPE. Finally, a
new target page must be created to store all the target nodes that are linked to the source node.

Figure 18. Flow diagram of the source list search function.

Figure 18 shows the flow diagram of the source list search function. At the beginning of the function, the
current node is initialized to the first node in the first page. If the input symbol is equal to the symbol that
is stored in the current node, then the program ends, otherwise, if the input symbol is greater/less than the
current symbol, then its right/left child will be visited. As we mentioned in the previous section, a child
node is identified by its page index and offset. If the child page is already in the local storage then we set
the child node as the current node and continue the search, otherwise we will load the child page to the
local storage and continue the process.

Load current
page

Initialize current node
and current page ID

Input symbol >=
current symbol

endCurrent
node/page ID =

left_child

Current
node/page ID =

right_child

Current page is in
local storage?

DMA-R

><

=

N

Y

Load current
page

Initialize current node
and current page ID

Input symbol >=
current symbol

endCurrent
node/page ID =

left_child

Current
node/page ID =

right_child

Current page is in
local storage?

DMA-R

><

=

N

Y

16

Figure 19. Target list search.

Figure 19 gives the detailed information about target list search process. When a source node is visited,
the SPE retrieves the address of the first target page that is linked to it. However, it does not have the
information of the address of the last page. The SPE sends a request to the PPE for the effective address
of the last page. The PPE searches for the last page alone in the link list and sends back its address. At the
same time, it also informs the SPE if the target list has only one page or the last target page is full. If the
target list has more than one page and if the last page is not full, the last page will be loaded into the local
storage. If the last page is full, then a new page is created in the local storage and it will be considered as
the last page of the target list. For each target tree that is connected to the source node, the SPE will set
the current search node to the ith node in the first page, where i is the index of the target tree. If the input
symbol is in the current node, then the KB value of the current node is incremented, otherwise, the page
ID of the child node is set to the ith entry of the next_page_ID array and the SPE goes on processing the
next target tree. After all target trees have been processed, a set of next_page_IDs are collected. The
minimum one is chosen and loaded from the main memory to replace the current page in the local storage.
Before this happens, if the current page is dirty, it must be written back. After the child page is loaded, the
SPE will repeat the previous procedure until all symbols have been found. If a symbol cannot be found in
the target list, a new node is created for it. If the last page is not full, the new node will be inserted into
the last page, otherwise it will be inserted into the new page. Finally, if the last page or the new page is
dirty, then they will be written back.

Load the last
target pageLoad the first

target page

Set
Next_page_ID[i]

For the ith
target tree

Symbol not in the
target tree

Create a new node in
the last (or new) page.

Link it to the current
page, set the dirty bit

Load pid

pid = min(
next_page_ID)

Incr. KB
value

Target tree has more
than 1 page

Last page is
full

Create a new
page in LS

Set current page as
the last page

Target symbol
found in

current page

DMA-R

Wait for the EA of
the last page

mbox-R

Req for the EA of
the last target page

mbox-W

DMA-R

Req. and wait for
the EA of pid

mobx-R,W

DMA-R

Write back current
page if it is dirty

DMA-W

A

A

A

A

A

Write back all the
dirty pages

A

End

DMA-W

If new page is created,
wait for the EA of a new

target page

mbox-R

Write back the
new page

Req. for the EA of a
new target page

mbox-W

DMA-W

Load the last
target pageLoad the first

target page

Set
Next_page_ID[i]

For the ith
target tree

Symbol not in the
target tree

Create a new node in
the last (or new) page.

Link it to the current
page, set the dirty bit

Load pid

pid = min(
next_page_ID)

Incr. KB
value

Target tree has more
than 1 page

Last page is
full

Create a new
page in LS

Set current page as
the last page

Target symbol
found in

current page

DMA-R

Wait for the EA of
the last page

mbox-R

Req for the EA of
the last target page

mbox-W

DMA-R

Req. and wait for
the EA of pid

mobx-R,W

DMA-R

Write back current
page if it is dirty

DMA-W

A

A

A

A

A

Write back all the
dirty pages

A

End

DMA-W

If new page is created,
wait for the EA of a new

target page

mbox-R

Write back the
new page

Req. for the EA of a
new target page

mbox-W

DMA-W

17

Figure 20 Flow of creating a target list

Figure 20 shows the flow of creating a new target list. The SPE will initialize a new page. For each
symbol in the target lexicon that is linked to the source lexicon, a node is created in the page. The SPE
waits for the PPE to allocate a page in the main memory and then use DMA write to write back the new
page.

The PPE continuously checks the output mail box for requests from each SPE. After processing these
requests, the results are sent to the input mail box of each SPE. Overall, there are 5 different requests:

1. Request for a new target page. Before the SPE writes back a new target page, the PPE needs to
allocate a space for the page in the main memory.

2. Request for a new source page. Before the SPE writes back a new source page, the PPE needs to
allocate a space for the page in the main memory.

3. Request to load the next target page. During the search for target symbol, if a page needs to be
loaded, the PPE will send the page ID to the SPE and the SPE will search through the link list to
find the address of the requested page.

4. Request to load the last target page. When a source node is visited, the SPE gets the address of
the first page in the target list. It will then request the address of the last page in the list.

5. Request to link the new source page. The SPE informs the PPE that a new source page has been
written back and the PPE will link it to the end of the source list.

Write back the
new page

Req. for the EA of a
new target page

For the ith
target tree

Create a new node in
the last page, link it to
the current page, set

the dirty bit

Clear the new page
cache line

Wait for the EA of a
new target page

mbox-R

DMA-W mbox-W
en
d

Write back the
new page

Req. for the EA of a
new target page

For the ith
target tree

Create a new node in
the last page, link it to
the current page, set

the dirty bit

Clear the new page
cache line

Wait for the EA of a
new target page

mbox-R

DMA-W mbox-W
en
d

18

4. RESULTS AND DISCUSSION
4.1. Pattern recognition application using BSB hardware

Three different types of patterns were trained and recalled using the 128-neuron BSB model. They are
line patterns, alphabet patterns and symbol patterns

In each of the above patterns the first 28 bits represent the Tag while the remaining 100 bits represent the
10-by-10 black-and-white image of the pattern, but the way by which tag is represented differs with the
type of the pattern being implemented. For example, for line patterns Bit 3, Bit 4, Bit 5 and Bit 6 are used
to differentiate the type of pattern being trained or recalled, while the remaining bits 0-2 & 7-28 are
always -1s. There are four different Line patterns, they are vertical, horizontal, forward slash and
backward slash. The tag bit representation for the patterns is shown below

Table 1. Flag bits for different line patterns.

While the remaining 100 bits represent a 10 by 10 pattern. The ‘+1’ represents the Energy pixel while the
‘-1’ represents the No Energy pixel. Figure 21 shows a vertical line pattern and its representation.

Figure 21. Vertical line pattern and its representation.

Total of 20 Line patterns were trained, five each of vertical, horizontal, forward slash and backward slash.
The complete training set is show in Figure 22.

Type of pattern Bit3 Bit4 Bit5 Bit6

Vertical +1 -1 -1 -1

Horizontal -1 +1 -1 -1

Forward slash -1 -1 +1 -1

Backward slash -1 -1 -1 +1

19

Vertical patterns:

Horizontal patterns:

Backward Slash:

Forward Slash:

Figure 22. Complete training set of line patterns.

The above patterns were recalled successfully by our design. In addition, their variations, such as the
thicker line patterns, V12 (first and second columns in V1 pattern are black), V34, V56, V78, V910, H12,
H34, H56, H78, H910, F12, F34, F56, F78, F910, B12, B34, B56, B78 and B910 were also recalled
successfully. All the patterns without tags (tag bits were placed with zeroes) were recalled successfully.

 V1 V3 V5 V7 V9

H1 H3 H5 H7 H9

B7 B3 B1 B5 B9

F7 F3 F1 F5 F9

20

For alphabet and symbol patterns the tag bit representation was different. One hot encoding scheme was
employed to represent the tag for each letter. (For example, the letter A had the first bit as +1 while the
remaining bits were -1, letter B had second bit as +1 while the remaining were -1, etc.). The same one hot
encoding scheme was used for symbol patterns. Each symbol had a unique tag. The different letter and
symbol patterns are shown in Figure 23.

Figure 23. Complete training set of alphabetic and symbol patterns.

21

All the above patterns were recalled successfully without tags. Recall was attempted on some of the
above patterns with tag and partial input. Some of the partial patterns converged successfully to the
original patterns, while others failed to converge. For example, for the letter A, the original pattern was
trained for 500 iterations along with other letters. The original pattern without tag took 9 recalls to
converge. Different partial patterns (shown in Figure 24) were recalled without tags. Some of the patterns
were able to converge successfully, while a few failed to converge to the original pattern.

Figure 24. Partial patterns of letter “A”.

The pattern in image (a) took 20 recall iterations to converge successfully to the original pattern while
patterns (b) and (c) took 27 and 41 recalls, respectively to converge correctly. But the pattern (d) failed to
converge to the original pattern after 16 recalls.

Table 2. Statistics of successful and unsuccessful recall operations.

 # of recalls before
successful converge

of recalls before
unsuccessful converge

Exact training pattern
without tag 8 ~ 11 N/A

Similar/partial pattern
without tag 11 ~ 41 16 ~ 40

The platform for running the BSB recalls is the Annapolis Wildstar II Pro PCI-X card with one Xilinx
Virtex II Pro XC2VP70 FPGA and six Samsung QDRII SRAMs. The system clock frequency is 100
MHz.

64 different Input patterns (32 line patterns and 32 alphabet patterns) replicated four times to form 256
Input patterns were inputted to the 256 128 neuron BSB model through the file “x_vector256.txt”. The
corresponding weight matrices of the Line Patterns and that of the Alphabet Patterns were also input
using two files “weight_matrix.txt” and “weight_alpha.txt”. For each of the input patterns 30 recall
iterations were performed and then output the recalled pattern to the software where they are stored in an
array one by one. At the end of recall of the 256th pattern all recalled patterns were sent to a file
“x_recalled.txt”. The file “x_input.txt” had all the 64 different Input patterns represented in 0’s & 1’s. In
the output file “x_recalled.txt” all the recalled patterns were represented in 0’s & 1’s (where -32767 &

22

+32767 were represented as 0 & 1 respectively). If in 30 recall iterations any of the input bits did not
converge to either -32767 or +32767 then it was represented as ‘N’. The screenshot of the output file
“x_recalled.txt” is show below in Figure 25. The output recalled pattern is shown below its respective
input pattern. The output pattern is represented in Tag and Pattern format. We can see on the right half
side of the screenshot that the “Partial A” input pattern is not fully recalled at the end of 30 recall
iterations. The input bits that did not converge are marked as ‘N’.

Figure 25. Screenshots of the recall output files.

23

4.2. Performance characterization of cogent confabulation algorithms on Cell

Five different training files were tested to evaluate the performance of the cell program. They are:

A. random-400: randomly generated file (400 sentences)

B. random-600: randomly generated file (600 sentences)

C. story-short: children’s short story (126 sentences)

D. story-long: children’s long story (1092 sentences)

E. science: part of a science paper about relativity (334 sentences)

The size of the source and target page is 64 nodes, i.e. N=M=64. For each source tree, 11 source pages are
cached in the local storage, i.e. L = 9.

Figure 26. Performance comparison.

Figure 26 (a)~(d) gives the performance comparison between the cell program and single processor program for
those 5 test cases. Table 3 gives the performance information of the cell program, including its speedups over the
single processor program, the idle-to-busy-ratio of the PPE for each test case and the parallelism of the program
when running different test cases. The speedups are calculated as the training time on cell divided by the training
time on single processor. The parallelism is calculated as the sequential runtime divided by the parallel runtime.

0
0.004

0.008
0.012

0.016
0.02

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

0
0.004

0.008
0.012

0.016
0.02

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

0

0.05

0.1

0.15

0.2

0.25

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

0

0.05

0.1

0.15

0.2

0.25

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

0
0.02

0.04

0.06

0.08

0.1

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

0
0.02

0.04

0.06

0.08

0.1

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

spu
0

spu
1

spu
2

spu
3

spu
4

spu
5 ref

(a) random-400 (b) random-600

(c) story-short (d) story-long

(d) science

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.04
0.08
0.12
0.16
0.2

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.04
0.08
0.12
0.16
0.2

spu0 spu1 spu2 spu3 spu4 spu5 ref

R
un

tim
e

(s
)

24

Table 3. Cell program performance information.

Test cases Random-400 Random-600 Story-short Story-long Science
Speedups 6.25 5.88 1.36 1.37 1.56
Idle-to-busy-ratio 1:2.3 1:2.4 1:15 1:72 1:35
Parallelism 2.8 2.6 3.0 1.6 2.1

The results show that the cell program provides less speedup for the three real life test cases. A
future software profile shows that these test cases have low PPE idle-to-busy-ratio, which is mainly

caused by large number of last target page requests issued by the SPE.
Table 4 shows the detailed profile information of the SPE-PPE requests.

Table 4. Software profile of SPE-PPE requests.

Test cases New source page Next target page Last target page Link source page
Random-400 228800 0 222266 228800
Random-600 440000 0 449988 440000
Story-short 5544 0 883399 5544
Story-long 222266 222299 1111228877 222266
Science 111188 11 443399 111188

We further optimized the cell program so that each SPE handles the last_target_page_request
locally. This reduces about 60% of the runtime. Figure 27 shows the performance of the optimized

software and

Table 5 gives the speedups of the optimized cell program over the single processor program.

Table 5. Speedups of the optimized cell program.

Test cases Random-400 Random-600 Story-short Story-long Science
Speedups 8.3 9.6 3.0 3.9 4.0

25

Figure 27. Performance of optimized software.

5. CONCLUSIONS
We have described the working hardware and software developed to realize large-scale Brain-State-in-a-
Box (BSB) models on a workstation with hardware acceleration using a Field Programmable Gate Array
(FPGA), as well as the implementation of confabulation based knowledge base training function on the
Cell Broadband Engine (CBE). Actual runtime measurements show that by applying the hardware and
software optimization techniques developed in this research, we were able to significantly improve the
performance of both algorithms, comparing to the normal software solutions on general-purpose
processors.

We are honored to be part of, and be able to contribute to the cognitive computing research efforts at
AFRL Rome Site. We would like to thank Dr. Richard Linderman, Dr. Tom Renz, Mr. Daniel Burns, Mr.
Michael Moore, and many other researchers for their strong support and valuable advises during the
course of this project.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.04

0.08

0.12

0.16

0.2

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.04

0.08

0.12

0.16

0.2

spu0 spu1 spu2 spu3 spu4 spu5 ref

0

0.005

0.01

0.015

0.02

0.025

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.005

0.01

0.015

0.02

0.025

spu0 spu1 spu2 spu3 spu4 spu5 ref

0

0.05

0.1

0.15

0.2

0.25

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.05

0.1

0.15

0.2

0.25

spu0 spu1 spu2 spu3 spu4 spu5 ref

0

0.02

0.04

0.06

0.08

0.1

spu0 spu1 spu2 spu3 spu4 spu5 ref
0

0.02

0.04

0.06

0.08

0.1

spu0 spu1 spu2 spu3 spu4 spu5 ref

(a) random-400 (b) random-600

(c) story-short (d) story-long

(d) science

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

26

6. REFERENCES
[1] “Associative Neural Memories: Theory and Implementation,” Mohamad H. Hassoun, Editor, Oxford

University Press, 1993.
[2] “On Intelligence,” Jeff Hawkins, Sandra Blakeslee, Times Books, Henry Holt and Company, LLC,

2004.
[3] “WILDSTAR II for PCI Data Sheet,” Annapolis Micro Systems, Inc.
[4] “Virtex-II Family Product Table,” Xilinx, Inc.
[5] “Virtex-II Pro Family Product Table,” Xilinx, Inc.
[6] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec, “The Many Faces of

Publish/Subscribe,” ACM computing Surveys, 35(2), June 2003.
[7] R. Hecht-Nielsen, “Mechanization of Cognition”, Biomimetics, CRC Press, 57–128.
[8] Q. Qiu, D. Burns, M. Moore, R. Linderman, T. Renz, Q. Wu, “Accelerating cogent confabulation:

An exploration in the architecture design space,” IEEE World Congress on Computational
Intelligence, June 2008.

[9] M. Kistler, M. Perrone, F. Petrini, “Cell Multiprocessor Communication Network Built for Speed,”
IEEE Micro, 2006.

